4 research outputs found

    Simulating Light-Weight Personalised Recommender Systems in Learning Networks: A Case for Pedagogy-Oriented and Rating-Based Hybrid Recommendation Strategies

    Get PDF
    Recommender systems for e-learning demand specific pedagogy-oriented and hybrid recommendation strategies. Current systems are often based on time-consuming, top down information provisioning combined with intensive data-mining collaborative filtering approaches. However, such systems do not seem appropriate for Learning Networks where distributed information can often not be identified beforehand. Providing sound way-finding support for lifelong learners in Learning Networks requires dedicated personalised recommender systems (PRS), that offer the learners customised advise on which learning actions or programs to study next. Such systems should also be practically feasible and be developed with minimized effort. Currently, such so called light-weight PRS systems are scarcely available. This study shows that simulation studies can support the analysis and optimisation of PRS requirements prior to starting the costly process of their development, and practical implementation (including testing and revision) during field experiments in real-life learning situations. This simulation study confirms that providing recommendations leads towards more effective, more satisfied, and faster goal achievement. Furthermore, this study reveals that a light-weight hybrid PRS-system based on ratings is a good alternative for an ontology-based system, in particular for low-level goal achievement. Finally, it is found that rating-based light-weight hybrid PRS-systems enable more effective, more satisfied, and faster goal attainment than peer-based light-weight hybrid PRS-systems (incorporating collaborative techniques without rating).Recommendation Strategy; Simulation Study; Way-Finding; Collaborative Filtering; Rating

    Increasing Learner Retention in a Simulated Learning Network Using Indirect Social Interaction

    No full text
    A learning network is a network of persons who create, share, support and study units of learning (courses, workshops, lessons, etc.) in a specific knowledge domain. Such networks may consist of a large number of alternative units of learning. One of the problems learners face in a learning network is to select the most suitable path through the units of learning in order to build the required competence in an effective and efficient way. This study explored the use of indirect social interaction to solve this problem. Units of learning that have been completed successfully by other comparable learners are presented to the learners as navigational support. A learning network is simulated in which learners search for, enrol in and study units of learning, subject to a variety of constraints: a) variable quality of the different units of learning, b) disturbance, i.e. interference by priorities other than learning and c) matching errors that occur when the entry requirements of the selected unit of learning do not align with the pre-knowledge of the learner. Two conditions are explored in the network: the selection of units of learning with and without indirect social interaction. It was found that indirect social interaction increases the proportion of learners who attain their required competence in the simulated learning network.Self-Organisation, Education, Distance Learning, Lifelong Learning, Learning Network

    Learning technologies in e-learning: An integrated domain model

    No full text
    There is a lack of a integration and harmonization in the eLearning field and even very basic theories and models about eLearning are missing. There is a lot of conceptual confusion. This hinders implementation and the further development of the field. In this chapter I will try to bring the different dimensions together by introducing an integrated conceptual framework that enables researchers, developers, implementers, managers and others to understand, organize, classify, plan and approach the issues in eLearning. The framework is presented as a domain model. It defines the field of eLearning and its basic structure, vocabulary and issues
    corecore